‘ ! ! . LLNL-CONF-642236

LAWRENCE
LIVERM ORE
NATIONAL

ooy | ASSESSING the Effects of Data
Compression in Simulations Using
Physically Motivated Metrics

D. E. Laney, S. Langer, C. Weber, P. Lindstrom,
A. Wegener

August 12, 2013

Supercomputing
Denver, CO, United States
November 17, 2013 through November 22, 2013

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

Assessing the Effects of Data Compression in Simulations
Using Physically Motivated Metrics

Daniel Laney
Lawrence Livermore Lab

dlaney@linl.gov

Peter Lindstrom
Lawrence Livermore Lab
pl@Ilinl.gov

ABSTRACT

This paper examines whether lossy compression can be used
effectively in physics simulations as a possible strategy to
combat the expected data-movement bottleneck in future
high performance computing architectures. This paper shows
that, in a number of cases, compression levels of 3-5X can be
applied without causing a significant change in the physical
quantities that are of most interest for each simulation.

Rather than applying classical error metrics from signal
processing, we utilize physics-based metrics appropriate for
each code to evaluate the impact of compression. We evalu-
ate simulations run with three different codes: a Lagrangian
shock-hydrodynamics code, an Eulerian higher-order hydro-
dynamics turbulence modeling code, and an Eulerian cou-
pled laser-plasma interaction code. We apply compression
to relevant quantities after each time-step to approximate
the effects of tightly coupled compression and also study the
compression rates to estimate memory and disk-bandwidth
reduction. We find that the error characteristics of compres-
sion algorithms must be carefully considered in the context
of the underlying physics being modeled.

Keywords

data compression, high performance computing

1. INTRODUCTION

The computing power of large systems is increasing faster
than their memory and disk bandwidth. A number of re-
ports have indicated that this will lead to serious difficul-
ties in effectively exploiting proposed Exascale (1018 floating
point operations per second) systems. In particular, a large
number of applications will be limited by memory band-
width rather than processor performance [1,2]. Applica-
tions with large memory footprints may be unable to write
a checkpoint to disk in a time short compared to the mean
time between application interrupt (MTBAI). The memory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions @acm.org.
SC13 November 17-21, 2013, Denver, CO, USA

Copyright 2013 ACM 978-1-4503-2378-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2503210.2503283

Steven Langer
Lawrence Livermore Lab

langer@linl.gov

Christopher Weber
Lawrence Livermore Lab

weber30@lInl.gov

Al Wegener
Samplify

awegener@samplify.com

per core will also drop, forcing some strong scaling relative
to current systems. It will be difficult to increase either disk
bandwidth, memory bandwidth, or memory capacity above
projections due to power constraints.

This paper examines whether compression can be used ef-
fectively in physics simulations to mitigate these effects by
reducing data size and therefore bandwidth requirements.
In effect, compression provides the opportunity to trade off
additional computation in exchange for reduced bandwidth.
Lossless compression ratios are modest for the codes we con-
sider and thus will only have modest impact on memory
bandwidth requirements at Exascale. For example, data ar-
rays from LLNL’s pF3D code can only be losslessly com-
pressed by a factor of 1.17X by gzip, and 1.29X by fpzip,
one of the floating point compression schemes used in this
paper. While many physics simulations start out with large
uniform (constant) regions, lossless compression rates de-
cline quickly once a simulation starts running as, in many
cases, the low order significand of state variables rapidly take
on a semi-random character. Therefore, to have a significant
impact on the memory or disk bandwidth requirements of
simulations, lossy compression methods are necessary.

Lossy compression is most frequently used for photographs
and for videos where key-frames periodically reset the error
to zero. The physics codes we consider contain run time-
varying dependencies whose errors can potentially accumu-
late. If the compression errors at one time step are strongly
correlated with errors at the next time step, the cumulative
effect might grow more rapidly than if they are uncorre-
lated. A compression algorithm should be judged both on
the level of compression it achieves and the characteristics
of the differences it generates.

We are interested in two possible uses of compression:
“disk compression” and “memory compression”. In “disk
compression,” arrays are compressed before they are written
to disk; in “memory compression,” arrays are compressed
while stored in off-chip memory and decompressed when
they are loaded into on-chip cache for computation.

Disk compression can have a positive impact on perfor-
mance today. For example, the bandwidth per core to the
parallel file system on Cielo, a Cray XE-6 at Los Alamos
National Laboratory, is roughly 1 MB/s for pF3D when 1k
to 64k cores write simultaneously. Lossy compression al-
gorithms have a throughput of roughly 200 MB/s, so the
time spent compressing data would be small compared to
the time spent writing it to disk. The time spent writing to
disk would be reduced by roughly the compression ratio.

Memory compression will not help performance on cur-
rent multi-core systems because memory bandwidth per core
(roughly 8.6 GB/s on an Intel Sandy Bridge) is significantly
higher than software compression rates. The memory band-
width per core is likely to drop on future systems, which
will make memory compression more viable. An interest-
ing possibility is to put compression in on-chip logic. The
APAX compression algorithm can achieve throughputs of
2.5 to 8 GB/s while using between 0.1 and 0.4mm? in 28 mm
CMOS and increasing the power consumption of a chip by
less than one percent. This rate is close enough to the mem-
ory bandwidth per core that memory compression might in-
crease overall application performance.

Another benefit of memory compression is that it would
allow our codes to fit more zones in the available memory.
In particular, compression would allow us to fit more zones
in the fast GDDR memory on current Nvidia and Intel ac-
celerator boards or the stacked memory on proposed future
systems while reduce accesses to the slower DDR memory.

The main challenge when applying lossy compression is
assessing its effect on simulation accuracy. Depending on
the chosen compression ratio, lossy compression will result
in differences larger than arthmetic roundoff. That is not a
show-stopper — many decisions made in setting up a simu-
lation also change the answer. The scientist running a code
picks a zone size based on a tradeoff between more accurate
answers and the computational cost of the simulation. Com-
putational scientists usually make these choices based on the
desired accuracy of various integral physical quantities, not
by bounding the expected zone-by-zone differences between
two proposed simulations.

We propose using the same integral physical quantities
to assess the impact of compression. In our approach, the
code developer runs test problems with and without com-
pression and evaluates key physical quantities. The results
can be used to select the best compression algorithm and
the proper compression level. An important consideration
is that memory compression has a larger impact on the accu-
racy of a simulation than disk compression because it occurs
hundreds of times more frequently than checkpointing. Our
approach is to apply compression at the end of every cycle,
in order to simulate the effects of memory compression. Our
results also provide an upper bound on how much loss could
be tolerated in checkpoints. Where applicable we also inves-
tigate lossy compression at checkpoint frequencies to verify
this. This paper shows that, in the simulation codes we
examined, 3-5X compression ratios can be applied without
causing a significant change in the physical quantities that
are of most interest for the simulation.

We evaluate the impact of compression on three different
simulation codes: LULESH, a shock hydrodynamics mini-
app; Miranda, a hydrodynamics code for large turbulence
simulations; and pF3D, which simulates the interaction of a
high intensity laser and a plasma (ionized gas). This paper
is organized into three sections. Each section begins with a
high-level discussion that should be accessible to a general
HPC audience. The rest of the section provides details that
may only be of interest to experts. The final section sum-
marizes our results and indicates topics for future research.

2. PRIOR ART

Numerical compression has an exceedingly rich history
dating back to the 1960s. However, the compression re-

search community has understandably focused on compres-
sion of consumer speech, audio, images, and video, given
the ubiquity of such media. Media compression techniques
are inappropriate for a universal numerical encoder because
the quality metrics for media compression are determined
by limitations of human hearing and vision, not by the ac-
curacy requirements of numerical computations. Compres-
sive sensing (CS) [3,4] is targeted towards real-time sensor
systems but requires significant back-end complexity to un-
wind the analog front end’s random sampling. Waveform
coders [5,6] encode integer samples but can lack flexibility.
Lossless compression of scientific data [7-10] comes closest
to a universal numerical encoder but typically achieves less
than a 2X compression ratio on floats and even lower ra-
tios on doubles. Furthermore, most such algorithms do not
support lossy compression.

Lossy compression for scientific and medical data has his-
torically been applied to data sets to reduce their size for
post-processing and visualization. Muraki et al. [11] pio-
neered the application of wavelet transforms to volumetric
data for visualization applications, thresholding wavelet co-
efficients to obtain approximate representations and apply-
ing non-orthogonal wavelets to medical images [12]. More
recently, Woodring et al. [13] explored the use of wavelet
compression in JPEG2000 to enable scientists to trade off
data quality for reduced data size. Their approach tar-
geted reduced disk I/O time in visualization applications
and faster transfers of data from remote systems to local
assets.

ISABELA [14] has been proposed as a data reduction ap-
proach for HPC applications, particularly targeted at data
deemed effectively incompressible due to randomness or noise.
The data is partitioned into blocks and the data in each
block is sorted by value. Splines are fitted to the resulting
monotonic data using a relatively small number of knots.
Temporal patterns are leveraged to further increase com-
pression ratios. The approach has several advantages for
disk-compression, particuarly since the method does not re-
quire global communication and can be run in-situ. Lehmann
et al. [15] present a modified version of ISABELA suited to
compressing flow simulations in porous media.

The simulations presented in this paper operate repeat-
edly on data that has been previously compressed, leading
to the possibility of amplification of compression-induced
differences. In the next section we discuss compression al-
gorithms in this context, and motivate our choice to use
predictive coders in our experiments.

3. COMPRESSION ALGORITHMS

In most physics simulations, the low order bits of floating
point numbers are effectively random. The presence of these
random bits prevents lossless methods from achieving high
compression rates. If some of the low order bits of floating
point numbers can be removed (or approximated) without a
significant impact on physics answers, we can achieve greater
compression at the expense of lost information. We believe
a compression method suitable for in-memory compression
should be able to run in both lossless and lossy modes, and
to be amenable to implementation in hardware with minimal
resources and power consumption.

We classify lossy compression schemes into three broad
categories: general lossless schemes like gzip and bzip2, trans-
form coding approaches such as those based on wavelet or

discrete cosine bases, and predictive coding schemes like the
two methods we apply in this paper. We do not consider
general lossless compression methods in this paper as they
are limited in the compression rates that can be achieved and
tend to be less effective for floating point data. Although
transform coding is traditionally used for lossy compression,
these methods have two main drawbacks: First, bit-for-bit
lossless compression with these schemes can be difficult to
achieve due to the subtleties of floating-point arithmetic,
including rounding modes and error, catastrophic cancel-
lation, order-of-evaluation dependence, extended precision,
etc. Second, hardware implementations for the in-memory
use-case are likely to use too many resources to be practical.

For these reasons, and for speed, we focus on predictive
coding approaches, in which each floating-point number is
predicted based on a trend of recently encoded values. The
prediction residual (difference between actual and predicted
value) tends to be small and can generally be encoded us-
ing fewer bits than the original floating-point value. The
number of recent values is generaly quite small for a 1D pre-
dictor and therefore a hardware implementation can be quite
compact. Typically, a lossless compression scheme is then
used to compress the residuals so that the overall approach
is bit-for-bit lossless. Lossy compression can be achieved
by ignoring low order bits of the input values, resulting in
smaller residuals and higher compression rates. For exam-
ple, applying lossless compression after zeroing the bottom
32 bits of a double precision number usually produces total
compression ratios around 3-4X. Finally, the errors intro-
duced by predictive schemes are independent of neighboring
values, usually being the result of truncation or rounding
which occur already in fixed precision floating point compu-
tations, whereas the errors introduced in transform coding
(e.g., Gibbs ringing) have spatial extent and exhibit spatial
correlations.

In this paper we study two compression algorithms de-
signed for floating-point data: Samplify’s APAX (APpli-
cation AXceleration) encoder [16,17] and the fpzip [7, 18]
compressor developed at LLNL. The APAX algorithm has
previously been applied to climate data [19], computed to-
mography x-ray samples [20], and a variety of integer and
floating-point datasets [21]. We describe these two compres-
sors in parallel to highlight their similarities and differences.

3.1 The fpzip and APAX Compressors

When used for lossy compression, APAX and fpzip both
begin by quantizing the value f to be encoded, in effect
reducing its precision. Quantization in APAX involves con-
verting a block of N consecutive values (usually N = 256)
to a signed integer representation, which can be thought of
as aligning the floating-point values in a block to a common
largest exponent. If exponent differences are large, this uni-
form quantization step may result in some loss of precision
for the smallest (in magnitude) values in the block. After
exponent alignment, each signed value is treated as a 32-bit
integer f. For (64-bit) double-precision data, this implies
that the bottom 32 bits of the significand are discarded. This
design decision was motivated by performance reasons — by
modifying APAX to use 64-bit integer arithmetic, such trun-
cation could be avoided, possibly at the expense of slower
compression. APAX then quantizes the integer f uniformly
to f= round(g), where g is a quantization level either spec-
ified by the user or computed adaptively by APAX to meet

a target coding rate.

fpzip delays the integer conversion and leaves the values
in their floating-point representation, quantizing the signifi-
cand instead. fpzip restricts ¢ to be an integer power of two,
which effectively leads to truncation of the significand by
discarding (zeroing) some fixed number of least significant
bits. Setting ¢ = 1 guarantees entirely lossless compression.
This non-uniform quantization allows the relative error to
be bounded in fpzip, whereas within each APAX block the
absolute error is bounded. Quantization is the only poten-
tial source of loss in both compressors.

Following quantization, each value is predicted as a linear
combination of recently encoded values. Both compressors
rely on polynomial interpolation for prediction, with fixed
integer polynomial coefficients. APAX uses univariate La-
grange polynomials of degree 0 and 1, allowing linear poly-
nomials (or any function with % = 0) to be reproduced.
That is, the unknown value f[x] is predicted in terms of the n
previous, known values by solving > (—1)"(7) flz—i] = 0.
The “best” polynomial degree n— 1 is chosen locally by mon-
itoring its effect on compression.

fpzip exploits correlations in more than one dimension us-
ing the Lorenzo predictor [22], which over a 3D domain
reproduces trivariate quadratic polynomials (or any func-

tion for which %@}faz = 0). In 3D this predictor solves

Ei,j,ke{oyl}(_l)l+J+kf[x — LY —Jz— k} =0 for f[ar,y, Z]7
and thus requires buffering a whole 2D “slice” from the 3D
domain. Note that this predictor uses only additions and
subtractions of known values.

Given the true floating-point value f and its prediction p,
fpzip converts f and p to integers f and § via a monotonic
mapping that treats the binary floating-point number as a
sign-magnitude integer. This step is not needed in APAX,
where the integer conversion occurs earlier. Both compres-
sors then compute an integer residual 7 = f — p = s(2° + d)
with sign s € {—1,0,+1}, exponent e, and e-bit difference
d € {0,...,2°—1}. The bits of d generally exhibit no corre-
lation and are transmitted verbatim. However, the sequence
of “signed exponents” ¢ = s(e + 1) tends to be highly cor-
related (if not necessarily peaked around zero). APAX ex-
ploits spatial correlations by encoding differences between
consecutive exponents in small groups. fpzip, on the other
hand, models the non-uniform distribution of exponents and
encodes each € independently using a fast entropy coder.

3.2 APAX Profiler

A compression algorithm that takes advantage of “signal”
characteristics may provide better compression ratios than
one that does not. The spatial wavelength dependence of
data arrays may be examined with popular applications like
MatLab and Mathematica. APAX includes a profiler that
allows a user to investigate the compressibility of their data
and APAX’s tradeoffs between bit rate and signal quality.
Figure 1(left) illustrates the APAX rate-distortion curve of
the pF3D ion acoustic wave array. The profiler suggests
a Recommended Operating Point (ROP) where the Pear-
son’s correlation coefficient between the original data x and
the APAX-decoded data & is 0.99999 (“five nines”). In Fig-
ure 1(right), the profiler compares the input signal spectrum
(upper curve) to the residual spectrum (lower curve) and
quantifies the spectral margin at the ROP.

Signal and Residual Spectra (FFT) for muliphys_deniaw_132.dat

Signal Peak: -113 dB
120 , |
130 :
al Floor -141dB
140 i B

150 FFT S2R Margin: 27.7-dB

APAX Rate-Conelation Graph for multiphys_deniaw_2.dat
100 :

99.998

99,995

(48)

Power

99.994

Correlation Caefficient (%)

99.992 160

" Residual: -169 dB

H 170 i ; i i
5 B 7 8 9 o 02 04 08 08 1
Encoding Ratio Narmalized Frequency

Figure 1: APAX profiler results for a pF3D ar-
ray representing ion acoustic waves. The profiler
shows (left) the recommended compression level and
(right) the corresponding power spectra.

Density vs. Radius

- - 64 bits

02 03

04 05 06 0.7 0.9 10
Radius (Distance to Element Centroid)

An overview of the LULESH shock-
(left) Density field

Figure 2:
hydrodynamics simulation.
showing the shock wave and mesh deformation.
(right) Scatter plot of density vs. radial displace-
ment from the origin for every element in the mesh.

4. SIMULATION & VALIDATION METHODS

4.1 LULESH

LULESH is a shock hydrodynamics mini-application de-
veloped for use in evaluation of current and future com-
puter systems and proposed programming models [23-25].
LULESH solves the Sedov blast wave test problem — a point
explosion surrounded by an initially uniform surrounding
gas. The gas consists of one material and is modeled in
three dimensions using a Lagrangian (moving mesh) formu-
lation. Figure 2 depicts two key features of the simulation
— the deformation of mesh elements and the shock wave.

LULESH solves the inviscid compressible Navier-Stokes
equations in the Lagrangian formulation. A staggered mesh
approximation [26] with single point quadrature for element-
centered thermodynamic quantities such as density and pres-
sure is utilized. Kinematic variables such as position and
velocity are defined at mesh nodes. The Sedov problem
presents an interesting use case for compression, as most
field values vary slowly over most of the domain, but change
quickly and abruptly near the shock.

For the Sedov problem, the two key physics requirements
are that the blast wave should be spherical, and the shock
radius versus time should match the analytic solution. In
this paper we evaluate the symmetry of the shock by com-
paring the field values as a function of radius for various com-
pression levels and methods, to the results obtained with a
double precision simulation with no compression. We assess
physical accuracy by estimating shock position as the dis-
tance to the centroid of the element with maximal density,

Figure 3: The figure shows the intensity of the laser
beam as it enters the hohlraum. The hohlraum is a
can-like object with the fusion target at its center.
The intensity increases as the color changes from
blue to green to yellow to red. The bright spots em-
bedded in a lower intensity background are a design
feature of NIF beams.

and comparing that value between runs with and without
compression. Although this measure is not the most so-
phisticated way to assess shock position, it is simple and
can be consistently applied across LULESH runs at varying
mesh resolutions. Finally, we measured differences in inter-
nal energy between compression and non-compression runs
to validate that compression wasn’t violating the expected
behavior of the LULESH simulation as represented by full
double precision runs at different mesh resolutions.

4.2 pF3D

The National Ignition Facility (hereafter NIF; [27,28]) is
an NNSA experimental facility that houses the world’s most
powerful laser. One of the key goals of the NIF is to compress
a target filled with deuterium and tritium to a temperature
and density high enough that fusion ignition occurs.

The intensity of NIF beams exceeds 10'°> W/cm? in the
brightest spots. When intensities are this high, it is possible
for the laser to couple to fluctuations in the plasma density
and backscatter a significant fraction of the laser light. pF3D
[29-31] is a multi-physics code that simulates interactions
between laser beams and the plasma in NIF experiments.
pF3D is used to evaluate proposed target designs and to
pick the ones with acceptably low levels of backscatter.

pF3D zones are roughly the size of the laser wavelength
(0.35um) while the plasmas of interest are several mm across.
Simulations of the full path of a single laser beam require
50 billion or more zones. Simulations of five interacting
beams may require more than a trillion zones. pF3D has
been used to run simulations with 64k or more cores on
IBM Blue Gene/L, IBM Blue Gene/P, and Cray XE-6 sys-
tems. Work is underway to run a million core simulation on
an IBM Blue Gene/Q system.

Figure 3 shows the intensity pattern of the laser beam as
it enters the target in a NIF experiment. The bright spots
are referred to as speckles. Speckles are narrow transverse
to the laser propagation direction and extend for many laser
wavelengths in the propagation direction. The laser is de-
signed so that the speckles in the beam move around in
time. The plasma temperature and density respond to the
intensity averaged over time, so they see a smooth beam.

Backscattered light can be generated in the brightest speck-

Figure 4: Density fields are shown from a Mi-
randa simulation of the Rayleigh-Taylor instability
at (from top to bottom) t/7 = 1, 2.5, 10, 20.

les and grow in strength faster than the speckles move.
The laser light will refract when there is a density gradient.
Speckles are long enough that a small change in density can
shift a speckle sideways by a significant fraction of its width.

The locations of the speckles are extremely sensitive. For
example, the fused multiply-add instruction of the PowerPC
processor (with internal registers that are longer than 64
bits) produces results sufficiently different from x86_64 pro-
cessors to cause speckles to move sideways by a zone or more.
Compiler optimizations that change the order in which sum-
mations are carried out also cause speckles to move.

As a result of this high sensitivity to such small variations,
validation of new versions of pF3D relies on comparisons of
the total transmitted and reflected light as a function of
time (the total light is insensitive to the exact placement of
speckles) and on intensity histograms. This paper uses the
same physics-based validation methods to assess the impact
of lossy compression on pF3D.

4.3 Miranda

Miranda [32,33] is a Navier-Stokes code used to simulate
a range of hydrodynamic problems with higher-order accu-
racy. It uses spectral methods or compact differencing to
resolve turbulent structures with minimal dissipation. Dis-
sipation is added at high wavenumbers through the use of
artificial fluid properties [34], which act as a large-eddy sim-
ulation (LES) subgrid model. Miranda has run simulations
using over 64k cores on Blue Gene/L systems.

The Miranda test problem simulates the growth of the

Rayleigh-Taylor instability (RTI). Simulations of the RTI
typically start with small-scale perturbations on the inter-
face separating two fluids of different densities. The high
density fluid is on top of the low density fluid — an unstable
situation. The perturbation amplitudes grow, neighboring
perturbations merge, and, eventually, turbulent mixing oc-
curs. This inverse cascade of scales, from the initial short
wavelength perturbation to large wavelengths at late times,
requires high-order accuracy to ensure relevant features are
not removed through dissipative numerics or influenced by
the amplification of numerical noise.

The test problem is physically unstable to all perturbation
wavelengths. Filtering is employed to damp the growth of
modes with short wavelengths. The damping is quite strong
at a wavelength of 2 zones, but drops quickly as the wave-
length increases. An important point to remember when
investigating compression schemes is that the physics will
amplify numerical perturbations introduced by compression
as well as deliberately imposed perturbations. This means
that the wavelength spectrum and step-to-step coherence of
the perturbations produced by compression matter, in ad-
dition to the compression ratio.

The incompressible simulations shown here are initialized
with narrowband Gaussian perturbation spectra peaked at
8 grid cells per wavelength (Ao) and an RMS amplitude of
0.1 grid cells. This allows the instability to begin in its
linear stage. The two fluids have densities of p; = 1 and
p2 = 3, and gravitational acceleration of ¢ = 1, providing
a time scaling of 7 = \/A/Ag, where A = (p2 — p1)/(p2 +
p1) = 0.5 is the Atwood number. Density fields from a
5122x1024 simulation using 1024 processors are shown in
Figure 4. In the upper two images, at t/7 = 1 and 2.5, the
perturbations — just barely noticeable in the first image —
are growing independently at an exponential rate. By t/7 =
10, shown in the third image, perturbations have merged,
producing larger scales and mixed fluid. At t/7 = 20, shown
in the lower image of Figure 4, the layer has entered into an
apparent turbulent state.

An important quantity in assessing RTI simulations is the
mixing layer thickness, h, which is expected to behave as
h? = 4aAgh when the layer reaches a self-similar state at
late times. Another important characteristic at late times
is the spectrum of perturbations as a function of spatial fre-
quency. These physically motivated quantities will be used
to assess the differences between compressed and uncom-
pressed simulations.

S. RESULTS

This section presents results on the acceptable level of
compression in the LULESH, Miranda, and pF3D test prob-
lems. Simulations with and without compression are com-
pared using the physics metrics mentioned in the earlier dis-
cussion. Simulations may be sensitive to the details of how
compression is performed. As a result, the acceptable level
of compression for a given test problem may differ between
different compression algorithms.

The codes have been modified so that they compress and
decompress variables at the end of each time step, with each
variable represented on a (logical) Cartesian 3D grid. This
procedure approximates “memory compression,” which, if
actually in place between the memory and the cache, would
occur several times per time step. We also ran a Miranda
test where the compression function was called at the lower

frequency of checkpoint dumps to approximate “disk com-
pression”.

We report the minimum, maximum, and average com-
pression ratios over all domains. The minimum compression
ratio is the most important measure when using “memory
compression.” The process with the lowest compression ra-
tio will have the hardest time fitting in the available mem-
ory, and it will spend the most time reading and writing
memory. All three of these codes use a bulk synchronous
programming model, so the slowest process controls the per-
formance. Efficient parallel I/O packages have performance
that is dependent on the total number of bytes written, not
on the number contributed by each process. With an I/O
package of this sort, the average compression ratio is the
important quantity.

5.1 LULESH

In this section we explore the effects of compression on
the accuracy of the LULESH Sedov blast wave simulation.
We performed two studies: in the first study we varied the
mesh size and ran fpzip over a full range of precisions, to
t = 0.002. The energy at ¢t = 0 was scaled such that the
shock wave traversed nearly to the boundary. In the second
study, we ran with both APAX and fpzip on a 105% mesh
to time t = 0.05 at a small set of target compression rates
(APAX) or precisions (fpzip). We scaled energy at t = 0
such that the shock propagated to the boundary, in order
to assess if errors increased over time. We assessed shock
position in a manner similar to Tasker et al. [35]. Figure
5(left) shows density vs. radius for all elements in a 1053
simulation, with the shock position taken as the radius at
the maximum density value in the plot.

In the first study, we ran a series of simulations with fpzip
at precisions from 24 to 64 bits in steps of 4 bits on several
mesh sizes. Figure 5(middle) shows that mesh size has a
larger effect on shock position than compression rate. How-
ever, Figure 5(right) shows that the root mean square (here-
after RMS) error is actually slightly larger for higher resolu-
tion meshes. We note that higher resolutions require smaller
time steps and that may cause higher RMS errors due to a
larger number of applications of compression. For example,
the 453 problem completes in 1496 time steps, but the 1203
problem requires 4272 time steps. Our assessment is that
with respect to shock position and RMS error in individual
density values, the LULESH Sedov simulation has correct
behavior down to 48 bits, and that in several aspects preci-
sions as low as 32 bits are sufficient. We confirmed this as-
sessment by measuring internal energy loss in longer-running
simulations as we present below.

In the second study we ran simulations at 105 resolution
to t = 0.05. This study showed that the shock position was
accurately captured at fpzip precisions down to 32 bits, and
APAX rates up to 4X. The density vs. radius plot in Fig-
ure 5(left) shows density vs. radius for fpzip precisions of 24
and 64 bits (lossless), showing a failure mode when the preci-
sion is too low. The shock radius is smaller than in the higher
precision runs, indicating that energy has been lost and the
shock is trailing the converged full-precision solution. Fig-
ure 6 shows zoomed in views of the density field at the two
precisions showing that the shock is no longer spherical. We
note that fpzip may introduce a bias as it first discards sig-
nificand bits, effectively rounding towards zero. However,
we also found that at high compression rates APAX also

Figure 6: (left) A zoom in of the density field at the
shock in a 105° mesh at full precision. (right) The
shock at 24 bits of precision, showing that a signif-
icant amount of noise is introduced, although this
noise is symmetric. In both images, blue indicates
low density, and red indicates the highest density.

compressor ratio energy result
fpzip 64-bit 2.0 / 2.5/ 7.3 0.0 pass
fpzip 48-bit 2.8 / 3.7/ 9.7 —1x107°% pass
fpzip 32-bit 3.8 / 6.5 / 14.7 —0.07% pass
fpzip 24-bit N/A N/A fail
APAX 2X 24/31/192 +6x10"°% pass
APAX 3X 30/35/19.2 —0.002% pass
APAX 4X 4.0/4.5/19.0 —0.01% see text

Table 1: This table shows the compression ratios
achieved for the LULESH runs for mesh size 105°.
The ‘ratio’ column shows the minimum, mean, and
maximum compression ratios for all fields in the
problem. The value for mean compression is the
ratio between the storage required for all fields, di-
vided by the total compressed size of all fields. The
‘energy’ column records the percent of internal en-
ergy lost (or gained), with respect to the full pre-
cision run. The compression algorithm and setting
for each run is shown and is labeled by whether it
passes the physics criteria.

loses energy, presumably due to the scaling process it uses
to convert floating point values into 32-bit integers before
compressing them.

Table 1 shows the compression ratios and final internal
energy change achieved for LULESH runs using both fpzip
and APAX compression for the second study. We see that
over a fairly large range of compression rates and precisions
that minimal energy is lost. The 4X APAX run showed
good agreement with internal energy and shock position but
seeded non-physical noise in the nodal positions ahead of
the shock, so we did not deem that a total ‘pass’, nor a
total ‘fail’. The Sedov problem is stable, and it appears
that this noise in nodal positions in front of the shock does
not impact the shock position adversely, at least up to the
time we ended the simulation.

A limitation of our results is that the Sedov problem is
a simple test case. The requirements of simulations in-
volving more complicated geometries and multiple materials
may have more restrictive requirements with respect to lossy
compression. In addition, LULESH is a mini-app and con-
tains fields whose sole purpose is to reproduce data move-
ment patterns in larger codes. Since these fields are unit-
valued and do not impact simulation results we do not in-

Density vs. Radius

RMS Error of Node Positions vs. Precision

~— 45x45x45
~— 60 x60 x60
— 75x75x75
= 90x90x90 -
~—— 105x105x 105 ||
120 x 120 x 120

0.90 Shock Position vs. Precision ‘
10

0.88

0.86

0.84

lon

64 bits

'

24 bits,

N\

RMS Error

Shock Positi

= 45x45x45
~— 6060 x 60 10
— 75Xx75x75 I 101
—— 90x90x90
0.76 ~— 105x 105x 105 |]
120 x 120 x 120

1 L L L L ‘ . ‘ . " . .
60 65 20 24 28 32 36 10 11 18 52 56 60 64

0.1 0.2 0.3 0.4 0.5 0.6 20 2 30 35) T
fozip Precision (bits)

5 10 15 50
Radius (Distance to Element Centroid) fpzip Precision (bits)

Figure 5: (left) Density plotted against radius at ¢t = 0.02, for fpzip precision values of 24 and 64 bits, and a
105° mesh size. When retaining only 24 bits of precision, a significant amount of energy is lost, causing the
shock to be delayed. (middle) Shock position as a function of mesh size and fpzip precision. As we increase
mesh precision, the apparent change of shock position is larger than that induced by most precision settings.

(right) Root mean square error of nodal positions with respect to a run with no compression.

HH\\,LH‘HH\HH‘HHM\H‘HH\HH‘HH\HH‘
R e i

10+27HH‘\H\‘HH‘\H\‘HH‘\\H‘\H\‘HH‘\H\‘HHT
20 40 60 80 100

Figure 7: The figure shows a histogram of the
amount of laser energy per bin as a function of the
laser intensity. The beam has crossed the full extent
of the plasma. The black curve is from a run using
24-bit fpzip, the blue curve is from a run using 32-
bit fpzip, and the green curve is from a a run using
uncompressed double precision variables. The blue
and green curves overlay one another. The curves
for runs using APAX compression are very similar
and are not shown to avoid visual clutter.

clude them in our compression ratio data. Finally, LULESH
does not converge to a shock position cleanly, and up to mesh
resolutions of 175% we saw the shock position continuing to
vary slightly.

52 pF3D

The pF3D test problem simulates the propagation of a
laser beam through a plasma. The plasma is divided into
1 x 2 x 36 equal domains — one for each of the 72 MPI
processes. There are a total of 256 x 1024 x 756 zones,

each of which is 2 x 2 x 2 wavelengths in size. Some of
the laser light is absorbed, some is backscattered by Stimu-
lated Brillouin Scattering (SBS), and some reaches the exit
plane. When compression levels are high, some of the laser
energy is “eaten by numerical gremlins.” The total amount
of laser energy reaching the exit plane and the total amount
of SBS crossing the entrance plane are key integral measures
of what happens in a simulation. A more detailed metric is
the amount of laser energy as a function of laser intensity.

Figure 7 shows a histogram of the amount of laser energy
per bin as a function of the laser intensity. The histogram is
made after the laser has crossed the full extent of the plasma,
so energy has been lost due to absorption, backscattered
light, and numerical effects. All of the pF3D simulations
used double precision arithmetic. The blue (32-bit fpzip)
and green (lossless fpzip) curves are effectively identical. The
black curve (24-bit fpzip) is significantly lower at all but
the lowest intensities and indicates that compression has led
to the loss of laser energy. Compression is applied to the
electric field of the laser, but the laser energy depends on the
square of the field. A compression scheme that preservers
the integral of the electric field can still significantly alter
the laser energy. The compression scheme may also alter the
direction in which portions of the laser beam travel. Laser
energy propagating at an angle to the z-axis will travel a
greater distance and suffer more absorption before reaching
the exit plane.

Figure 8 shows a histogram of the amount of backscat-
tered energy per bin as a function of the intensity at the
entrance plane. The blue (32-bit fpzip) and green (uncom-
pressed) curves are effectively identical. The black curve
(24-bit fpzip) has significantly lower energy at all intensities,
a natural consequence of the reduced laser energy reaching
the back of the simulation.

Table 2 shows the compression ratios achieved for the
pF3D runs. The 64-bit fpzip run used lossless compression
and only achieved a 23% reduction in data size. The 48-bit
and 32-bit fpzip runs passed the physics criteria while the
24-bit fpzip run failed due to too much loss of energy in the
transmitted laser light. The simulations using APAX com-
pression passed the physics criteria for 2X, 3X, 4X, 5X, and
up to 6X but failed at 7X due to too much increase in the

2000. —
1000.

500. —

200.

M,

100.07\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\\\‘\\‘\\‘\\\\‘\‘\‘\\\‘\\\\““7
20 40 60 80 100

Figure 8: The figure shows a histogram of the
amount of backscattered energy per bin as a func-
tion of the laser intensity. The histogram is made
at the entrance plane where the backscattered light
is at its maximum. The black curve is from a 24-bit
fpzip run, the blue curve is from a 32-bit fpzip run,
and the green curve is from a run without compres-
sion. The blue and green curves overlay one another.

compressor ratio energy result
fpzip 64-bit 1.27 / 1.29 / 1.32 0 pass
fpzip 48-bit 1.86 / 1.91 / 1.97 0 pass

fpzip 32-bit
fpzip 24-bit

3.46 / 3.66 / 3.89 -0.2% pass
580 /6.57 / 7.37 -37% fail

APAX 2X 219/ 2.22] 2.26 0 pass
APAX 3X 3.03 / 3.03 / 3.00 0 pass
APAX 4X 4.06 / 4.06 / 414 0.1% pass
APAX 5X 5.06 / 5.07 / 5.16 0.9% pass
APAX 6X 6.09 / 6.09 / 6.20 1.2% pass
APAX 7X 710 /7.11/722 107% fail

Table 2: This table shows the compression ratios
achieved for the pF3D runs. The ‘ratio’ column con-
tains minimum, mean, and maximum compression
rates. The ratio is the number of bytes in the un-
compressed arrays divided by the number of bytes in
the compressed arrays. Each run is characterized as
passing or failing the physics criteria, or crashing.
The ‘energy’ column shows the percent difference
in the backscattered energy relative to the uncom-
pressed run.

transmitted laser light. We also ran pF3D with float (32-bit)
precision and no compression. This run passed the physics
criteria and could be thought of as achieving 2X compres-
sion. The run with 48-bit fpzip also achieved roughly 2X
compression, but had higher precision than the run using
float precision.

5.3 Miranda

To compare the effects of lossy compression on the devel-
opment of the RTI, simulations with various levels of com-

Figure 9: Density field at the end of the simulation
from the reference (64-bit) run (left) and the APAX
5X case (right), which have nearly the same mixing-
layer thickness and turbulence characteristics.

pression were run on 512%x 1024 grids using 1024 processors.
After each time step, the density and the three components
of velocity are compressed and decompressed using fpzip or
APAX. This results in ~10,000 lossy compression steps over
the course of the simulation.

In the case of fpzip, the compression step truncates the
64-bit data to either 48, 40, or 32 bits. Larger compression
rates are achieved (~4X) in regions where the flow field is
relatively uniform (lossless compression is applied after the
numbers are truncated). To test the effect of compressed
checkpoint files, an additional test was run calling the 32-
bit compression step every 500" time step, resulting in 16
compress/decompress calls over the course of the simulation.
In contrast, APAX was used in three simulations with 2X,
4X, and 5X compression at each time step.

Images of the mixing layer at the end of the simulation
(t/T = 22) are shown in Figure 9 from the 64-bit case (left)
and the APAX 5X case (right). While there are differences
between the two images, the quantitative metrics presented
below show that the integral quantities and the turbulence
state are nearly identical.

The thickness of the mixing layer, h, is plotted in Figure 10
as the lower group of lines. The reference simulation (64-bit)
is plotted in black while the 40- and 32-bit fpzip compres-
sion cases (called each time step) are plotted in blue and
red, respectively. The APAX 5X case is plotted as a green
dashed line. The other four cases considered are all plotted
in gray, since their differences with each other and with the
64-bit curve are minor. The simulations were stopped once
the dominant wavelength approached the size of the simu-
lation domain. The 32-bit fpzip case is the only one that
failed outright, as it crashed at ¢/ =~ 14 when it became
numerically unstable. The other cases, and even the 32-bit
fpzip case before crashing, differed little from the reference
simulation. At the time the 32-bit fpzip case crashed, its
mixing-layer thickness was 2.4% larger than the reference
simulation. The 32-bit fpzip case where compression was
only applied every 500'" time step ran without issue and
differed by 0.38% in mixing-layer thickness at the end of the
simulation (¢/7 = 22). The growth rates are also shown
in Figure 10 as the upper set of lines with the same color
scheme. At early times, when the layer is growing expo-
nentially, there are no differences between the seven curves.
Once nonlinear growth begins, after ¢/7 > 3, small differ-
ences are noticeable. These differences are minor and all
cases show the expected h o t self-similar growth beyond
t/T > 6. Near the end of the simulation the fpzip 40-bit case
and the APAX 5X case had 5-7% smaller growth rates, re-

30,

25¢

20r

15 hr/Ay (x20)

107

t/T

Figure 10: Mixing layer thickness (lower curves)
and growth rate of the mixing layer (upper curves)
from a reference (64-bit) calculation (black), an fpzip
32-bit compression case (red), an fpzip 40-bit com-
pression case (blue), and an APAX 5X case (green
dashed). The grey curves include a 48-bit fpzip case,
a 32-bit fpzip case where compression is applied ev-
ery 500" step, and APAX with 2X and 4X com-
pression at every time step. Small differences are
observable in the 32- and 40-bit fpzip cases. The
32-bit fpzip case crashed at ¢/7 = 14.

103

10 : :
10° 10? 102
wavenumber

Figure 11: Energy spectrum of vertical velocity
(solid) and density (dashed) at the mid-plane of the
mixing layer at ¢t/7 = 22. All cases are shown ex-
cept the 32-bit fpzip case, which did not reach this
time. The spectra are very similar and feature a
k~%/% inertial range.

sulting in 1.9% and 0.49% smaller mixing-layer thickness,
respectively. Since these growth rates are systematically
smaller, rather than simply having different random fluctu-
ations like the other cases (gray curves), it is likely that the
mixing-layer thickness difference will compound and become
unacceptable if the simulation were run later in time (requir-
ing a larger initial domain). The differences in mixing-layer
thickness at the end of the simulation are listed in Table 3.

The two-dimensional energy spectrum from the plane cen-
tered within the mixing layer is shown in Figure 11 at t/7 =
22 for both the vertical velocity (solid) and the density

101 L

100 L

10" | Center of mixing layer:

10—2 L

10-3 L
< 10t . ’
~< -2h from mixing layer:
LTJ 10-11

APAX 4X
10-12 L
10-13 L
Jpzip 32-bit
10
10-15 L
-16 [. .

10 without compression

10} 1

1078 /‘\

10-19 . .

10° 10* 10°
wavenumber

Figure 12: Energy spectrum of density at the mid-
plane of the mixing layer (top set of curves) and at
a distance —2h from the mixing layer (bottom set of
curves) at t/7 = 14. The 32-bit fpzip case exhibits
high wavenumber features that cause the problem
to become numerically unstable.

compressor ratio loss thick. result
fpzip 48-bit 1.8 /3.3 /4.6 59E-12 0.07% pass
fpzip 40-bit 2.3 / 4.3 / 6.3 1.7TE-09 1.9% pass
fpzip 32-bit 3.2 /4.5 /6.5 4.1E-07 N/A crash

APAX 2X 21/23/26 3.3E-10 0.007% pass
APAX 4X 4.0 /4.1 /43 3.6E-06 0.19% pass
APAX 5X 51 /53 /54 47E-05 0.49% pass

Table 3: This table shows the compression ratios
achieved for selected Miranda runs. The ‘ratio’
column shows the minimum, mean, and maximum
compression rate achieved throughout the simula-
tion domain. The ‘loss’ column reports the RMS
difference at each time step in the density field due
to lossy compression divided by the mean density.
The ‘thick.” column shows the percent difference in
mixing-layer thickness at the end of the simulation.
Each run is characterized as passing the physics cri-
teria, failing the criteria, or crashing.

(dashed) (the 32-bit case is not shown, as it did not reach
this time). These spectra show the amount of energy con-
tained in the various length scales within the problem. At
large wavelength (low wavenumbers) the energy remains low
enough that the physics are not influenced by the domain
size. At the smallest scales (high wavenumbers) the energy
is removed through viscous dissipation. In-between these
scales is a power-law region, which, if the flow is turbulent,

45
840
©
5§35
w0
w
; 3.0/»—\".\
Qo
£
S2.5
L3 5 10 15 20 25 30
t/T

Figure 13: The compression ratio for an fpzip 48-bit
compression run is shown. The three curves repre-
sent the maximum, minimum, and mean compres-
sion rate among the 1024 processes.

has a -5/3 slope. Aside from small fluctuations, the curves
are nearly identical and all exhibit a -5/3 power-law for over
a decade in wavenumbers, signifying turbulent behavior.

To further investigate why the fpzip 32-bit case crashed,
Figure 12 shows density spectra at ¢t/7 = 14. The top set
of curves show the energy spectra of the density field at the
center of the mixing layer from all of the cases considered.
At this location the spectra are all nearly identical, show-
ing the beginnings of a power-law range and a dissipation
region at high wavenumbers caused by Miranda’s LES fil-
tering. The lower set of curves show the spectra from three
simulations, taken from a plane located a distance —2h from
the center of the mixing layer, where the flow field is rela-
tively quiescent. The APAX 4X case produced a greater
loss of precision than the fpzip 32-bit case, which is reflected
in its larger energy level in this region. In the fpzip 32-bit
case, however, a bump can be seen in the high wavenum-
ber region that corresponds to approximately 5 grid cells
per wavelength. This scale is large enough to remain af-
ter Miranda’s filtering routines. This spectrum also shows
an up-turn at the highest wavenumber portion of the spec-
trum. It is these features that accumulate and interact with
Miranda’s numerics that cause the problem to crash. This
shows that precision is not the only factor to consider when
choosing a compression scheme for “memory compression” —
one must also consider, or test, how compression will inter-
act with the code’s numerics.

The compression rate varied over the course of the sim-
ulation, within different regions of the simulation domain,
and for the different fields being compressed. In the APAX
5X case, for example, the three velocity fields were all com-
pressed to 5-5.5X, while the density field started out at 14X
compression in regions far from the mixing layer, and then
reduced to ~5X compression later in time. The rates were
averaged across time and fields and are reported in Table 3.
Also reported in this table is the loss that compression in-
troduced at each time step. This is defined as the RMS
difference in the density field after compression was applied
and normalized by the mean density. This loss criterion was
evaluated in the center of the mixing layer. As noted in the
table, all of the runs passed the physics criteria except for

3.2

3.0f

2.8

24%‘"\—/"_‘

() 5 10 15 20 25 30
t/T

compression rate
N
[=)]

Figure 14: The compression ratio for a 2X APAX
compression run is shown. The three curves repre-
sent the maximum, minimum, and mean compres-
sion rate among the 1024 processes.

the 32-bit fpzip run.

The fpzip compression rate varied over the course of the
simulation and at different regions within the simulation do-
main. Figure 13 shows the compression rate of all fields from
a 1024 processor RTI simulation using Miranda and com-
pressed with fpzip in 48-bit mode on each time step. The
compression rate begins at ~2.2 in processors near the mix-
ing layer and at ~4.5 in processors farther away. Over time
the minimum compression rate decreases, reaching a floor in
some processes at 1.7. Over the course of the simulation, an
average compression rate of 3.3 was achieved.

Figure 14 shows the compression rate of one of the veloc-
ity components from a 1024 processor RT1 simulation using
Miranda and APAX 2X compression on each time-step. The
average compression rate is slightly above 2X due to the fact
that the APAX coder converts all float values into a 32-bit
signed integer representation before quantization. The min-
imum compression ratio never falls below 2.0 on any proces-
sor. A fixed rate compression scheme may be important for
memory limited applications, in which a strict lower bound
on compression rate is required.

6. CONCLUSIONS

This paper has examined the impact of lossy compression
on three physics simulation codes — LULESH, Miranda, and
pF3D. All three codes can be run with a lossy compression
ratio of 3X or greater when using a frequency suitable for
“memory compression.” To our knowledge, this is the first
study of the effects of applying lossy compression to the
physics state of simulations as a strategy for mitigating the
data movement bottleneck expected on future systems.

The LULESH study indicates that a broad range of com-
pression parameters are valid for this run. The Sedov blast
wave problem is a stable problem, and we expect that for
unstable flows higher precision settings may be required.
We also found that for LULESH, the mesh size changed
the shock position more than the compression settings, un-
til very low precisions broke down the spherical symmetry
of the problem and seeded noise in the field values. Finally,
we noted that APAX and fpzip were similar in their per-
formance, indicating that compression schemes with either

fixed rate or fixed precision modes are viable. We found
that with APAX, the per-block scaling of values did lead
to unphysical noise in the nodal positions in front of the
shock wave at a requested compression rate of 4X. In fu-
ture work, it would be interesting to thread the compression
calls through the LULESH solver at the point when each
field value is updated, as this would be closer to how mem-
ory compression would occur in practice.

The Miranda run with 32-bit fpzip failed when compressed
at every time step but passed when run at the much lower
frequency required for “disk compression.” This run had a
compression rate of 4.5X, only slightly higher than the suc-
cessful 40-bit fpzip and APAX 4X runs. With the APAX
compressor, Miranda successfully ran with compression rates
of 5.3X.

A pF3D run with 32-bit fpzip (average compresion ra-
tio 3.66) had low errors while a 24-bit fpzip run (average
compression ratio 6.57) failed. The pF3D simulations us-
ing APAX passed the physics criteria at compression ratios
up to 6X. These results show that the onset of failure oc-
curs across a fairly narrow range of compression ratios and
can depend on interactions between the compressor and the
code’s numerics.

Lossy compression is a viable approach to reducing the
impact of limited disk bandwidth for all three codes. The
much more frequent compression necessary if arrays are de-
compressed each time they are loaded into cache is also ac-
ceptable if some caution is used in the requested compres-
sion level. Software compression takes longer than it does to
transfer the uncompressed data between memory and cache
on Intel Sandy Bridge systems. “Memory compression” soft-
ware will hurt performance on current systems, but it will
permit larger simulations to be run on a given number of
nodes. Hardware compression schemes may be required to
make “memory compression” a generally useful approach.
For checkpointing, file formats such as HDF5 already pro-
vide support for lossless compression, and APAX is available
as a compression filter for HDF5. The flexibility of libraries
make it straightforward to also add support for other lossy
compression schemes.

Acknowledgment

This document was released as LLNL-PROC-635789. This
work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Labora-
tory under Contract DE-AC52-07TNA27344. Some of this
material is based upon work supported by the Defense Ad-
vanced Research Projects Agency under its Agreement No.
HR0011-07-9-0001.

7. REFERENCES

[1] S. Moore, “Multicore is bad news for supercomputers,”
IEEFE Spectrum, vol. 45, no. 11, 2008.

[2] R. Murphy, “On the effects of memory latency and
bandwidth on supercomputer application
performance,” IEEFE International Symposium on
Workload Characterization, pp. 34—43, 2007.

[3] R. Chartrand, “Nonconvex compressive sensing and
reconstruction of gradient-sparse images: Random vs.
tomographic Fourier sampling,” in IEEE International
Conference on Image Processing, October 2008, pp.
2642-2627.

[4] S. Gleichman and Y. Eldar, “Blind compressed
sensing,” IEEE Transactions on Information Theory,
vol. 57, no. 10, pp. 6958-6975, October 2011.

[5] E. Ozturk, O. Kucar, and G. Atkin, “Waveform
encoding of binary signals using a wavelet and its
Hilbert transform,” IEEE International Conference on
Acoustics, Speech, and Signal Processing, vol. 5, pp.
2641-2644, June 2000.

[6] D. A. Wright, “ADPCM coding and decoding
techniques for personal communication systems,” US
Patent 5615222, Mar., 1997.

[7] P. Lindstrom and M. Isenburg, “Fast and efficient
compression of floating-point data,” IEEE
Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245-1250, 2006.

[8] M. Burtscher and P. Ratanaworabhan, “High
throughput compression of double-precision
floating-point data,” in Data Compression Conference,
March 2007, pp. 293-302.

[9] N. Huebbe and J. Kunkel, “Reducing the
HPC-datastorage footprint with MAFISC
multidimensional adaptive filtering improved scientific
data compression,” Computer Science Research and
Development Journal, vol. 28, no. 2-3, pp. 231-239,
May 2012.

[10] E. Schendel, Y. Jin, N. Shah, J. Chen, C. S. Chang,
S.-H. Ku, S. Ethier, S. Klasky, R. Latham, R. Ross,
and N. Samatova, “ISOBAR preconditioner for
effective and high-throughput lossless data
compression,” in IEEE International Conference on
Data Engineering, 2012, pp. 138-149.

[11] S. Muraki, “Approximation and rendering of volume
data using wavelet transforms,” in Proceedings of the
8rd conference on Visualization 92, ser. VIS ’92. Los
Alamitos, CA, USA: IEEE Computer Society Press,
1992, pp. 21-28. [Online]. Available:
http://dl.acm.org/citation.cfm?id=949685.949694

[12] ——, “Multiscale volume representation by a dog
wavelet,” Visualization and Computer Graphics, IEEE
Transactions on, vol. 1, no. 2, pp. 109-116, 1995.

[13] J. Woodring, S. Mniszewski, C. Brislawn, D. DeMarle,
and J. Ahrens, “Revisiting wavelet compression for
large-scale climate data using JPEG 2000 and
ensuring data precision,” in IEEFE Large Data Analysis
and Visualization, 2011, pp. 31-38.

[14] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky,
R. Latham, R. Ross, and N. F. Samatova,
“Compressing the incompressible with ISABELA:
In-situ reduction of spatio-temporal data,” in
FEuro-Par Parallel Processing, ser. Lecture Notes in
Computer Science, 2011, pp. 366-379.

[15] H. Lehmann and B. Jung, “In-situ data compression
for flow simulation in porous media,” in Parallel &
Distributed Processing Techniques € Applications,
2012.

[16] A. Wegener, “Adaptive compression and
decompression of bandlimited signals,” US Patent
7009 533, March, 2006. [Online]. Available: http://
www.patentlens.net/patentlens/patent /US_7009533/

[17] ——, “Block floating point compression of signal
data,” US Patent 8301803, October, 2012. [Online].
Available: http://www.patentlens.net/patentlens/

[21]

[22]

[30]

patent/US_8301803/

P. Lindstrom, “fpzip version 1.0.1,” 2008. [Online].
Available: https://computation.llnl.gov/casc/{pzip/
N. Huebbe, A. Wegener, J. Kunkel, Y. Ling, and

T. Ludwig, “Evaluating lossy compression on climate
data,” in International Supercomputing Conference,
June 2013, pp. 343-356, iSC13 Proceedings.

A. Wegener, N. Chandra, Y. Ling, R. Senzig, and

R. Herfkens, “Effects of fixed-rate CT projection data
compression on perceived and measured CT image
quality,” in SPIE Medical Imaging Proceedings, vol.
7627, Feb. 2010.

A. Wegener, “Universal numerical encoder and profiler
reduces computing memory wall with software,
FPGA, and SoC implementations,” in IEEE Data
Compression Conference, Snowbird, UT (USA),
March 2013, p. 528.

L. Ibarria, P. Lindstrom, J. Rossignac, and

A. Szymczak, “Out-of-core compression and
decompression of large n-dimensional scalar fields,”
Computer Graphics Forum, vol. 22, no. 3, pp.
343-348, 2003.

J. Keasler and R. Hornung, “Hydrodynamics
Challenge Problem, Lawrence Livermore National
Laboratory,” Lawrence Livermore National
Laboratory, Tech. Rep. LLNL-TR-490254, 2010.

I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen,
Z. Devito, M. Gokhale, R. Haque, R. Hornung,

J. Keasler, D. Laney, E. Luke, S. Lloyd, J. McGraw,
R. Neely, D. Richards, M. Schulz, C. H. Still,

F. Wang, and D. Wong, “LULESH programming
model and performance ports overview,” Lawrence
Livermore National Laboratory, Tech. Rep.
LLNL-TR-608824, December 2012.

I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain,
J. Cohen, Z. DeVito, R. Haque, D. Laney, E. Luke,
F. Wang, D. Richards, M. Schulz, and C. Still,
“Exploring traditional and emerging parallel
programming models using a proxy application,” in
IEEE International Parallel & Distributed Processing
Symposium, May 2013, to appear.

M. L. Wilkins, Methods in Computational Physics.
Academic Press, 1964.

E. I. Moses, “Overview of the National Ignition
Facility,” Fusion Science and Technology, vol. 54,

no. 2, pp. 361-366, 2008.

E. I. Moses, R. N. Boyd, B. A. Remington, C. J.
Keane, and R. Al-Ayat, “The National Ignition
Facility: Ushering in a new age for high energy density
science,” Physics of Plasmas, vol. 16, no. 041006, pp.
1-13, 2009.

C. H. Still, R. L. Berger, A. B. Langdon, D. E. Hinkel,
L. J. Suter, and E. A. Williams, “Filamentation and
forward Brillouin scatter of entire smoothed and
aberrated laser beams,” Physics of Plasmas, vol. 7,
no. 5, pp. 2023-2032, 2000.

R. L. Berger, B. F. Lasinski, A. B. Langdon, T. B.
Kaiser, B. B. Afeyan, B. I. Cohen, C. H. Still, and
E. A. Williams, “Influence of spatial and temporal
laser beam smoothing on stimulated brillouin
scattering in filamentary laser light,” Phys. Rev. Lett.,
vol. 75, no. 6, pp. 1078-1081, Aug 1995.

(31]

32]

33]

(34]

(35]

S. Langer, B. Still, T. Bremer, D. Hinkel, B. Langdon,
J. A. Levine, and E. A. Williams, “Cielo full-system
simulations of multi-beam laser-plasma interaction in
NIF experiments,” in Proceedings of the 53rd Cray
User Group Meeting, 2011.

A. W. Cook, W. H. Cabot, M. L. Welcome, P. L.
Williams, B. J. Miller, B. R. de Supinski, and R. K.
Yates, “Tera-scalable algorithms for variable-density
elliptic hydrodynamics with spectral accuracy,” in
ACM/IEEE Conference on Supercomputing, 2005,

p. 60.

W. H. Cabot and A. W. Cook, “Reynolds number
effects on Rayleigh-Taylor instability with possible
implications for type-Ia supernovae,” Nature Physics,
vol. 2, pp. 562-568, 2006.

A. W. Cook, W. Cabot, and P. L. Miller, “The mixing
transition in Rayleigh—Taylor instability,” Journal of
Fluid Mechanics, vol. 511, pp. 333-362, 2004.

E. Tasker, R. Brunino, N. Mitchell, D. Michielsen,

S. Hopton, F. Pearce, G. Bryan, and T. Theuns, “A
test suite for quantitative comparison of
hydrodynamics codes in astrophysics,” Monthly
Notices of the Royal Astronomical Society, vol. 390,
no. 3, pp. 1267-1281, 2008.

